
Performance Comparison of GPU and CPU-based
Execution of SHA-3-256 in Regards to

Password-Cracking

Salman Ma'arif Achsien (18221102)
Program Studi Sistem dan Teknologi Informasi

Sekolah Teknik Elektro dan Informatika
Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

smaarif.achsien@gmail.com

Abstract—Since time immemorial, passwords have been used
to ensure the confidentiality of as well as access control towards
information. In modern times, the use of passwords is slightly
modified, in that they are stored in a scrambled, hash form that is
difficult to reverse. This makes password-cracking a difficult and
expensive task, especially with the development of secure hashing
algorithms such as SHA-3-256. Luckily, advancements in GPU
technology have allowed for greater performances. We
demonstrate using hashcat that the use of a GPU, as well as the
parallel programming paradigm it offers, is superior to that of a
CPU when it comes to brute-force password-cracking.

Keywords—password, password-cracking, SHA-3-256, CPU,
GPU, hashcat, performance, benchmark

I. BACKGROUND

Guaranteeing the confidentiality of information has been a
civilization-wide concern ever since the founding of the first
empires, and perhaps since even earlier than that. There are
many ways of maintaining the confidentiality of information,
chief among which is by restricting access to information in
the first place. This act of allowing access towards information
only to those authorized is known as access control. Access
control is then usually complemented with authentication, that
is the act of confirming (authenticating) the identity of actors
in a system.

There are several methods that may be used to authenticate
actors, chief, and most primitive, among these methods are
passwords. Traditionally, passwords are words that are ideally
known only by those authorized to access confidential
information and or restricted systems. When an actor attempts
to access the relevant information or system, a challenge will
be issued to said actor by asking them for the password. If the
actor provides the correct password, their identity will be said
to be authenticated, and access will be given.

The use of passwords in maintaining confidentiality and
access control have been attested to at the very least since the
classical era. Polybius describes how the Roman military
employed passwords in order to restrict access to certain areas,
most usually the legionary encampment [14]. More recently, in
digital systems, passwords have also been used to authenticate
logins into user accounts, and consequently maintaining the

confidentiality of and access control towards any information
or systems that said user has rights to [15].

The way in which passwords are most commonly in digital
systems is slightly different to how it is traditionally used. In a
traditional scenario, the owner is not the only one with
knowledge of the password; instead, those in charge of
authenticating said owner would also have knowledge of the
password. This method of using passwords has a high chance
of causing unauthorized access to information and thus
breaking confidentiality and access control, as anyone in
possession of the password is able to use it and thus
authenticate themselves as the legitimate owner. That is not
the case in most digital systems. Instead, those in charge of
authentication only have knowledge of the scrambled or
hashed form of the password, which is calculated using a
one-way function known as a hash function. When an actor
answers the authentication challenge and provides the
password, this password is first run through the hash function,
the results of which are sent to the authenticator. Thus, only
the owner knows and is able to use the password, and not even
those in charge of authentication have knowledge of it.

Due to the one-way nature of hashing algorithms,
passwords stored in a hashed manner are extremely difficult
and expensive to recover. This is by design. Given a hash
digest calculated using a secure hashing algorithm as well as
knowledge of the algorithm used, anyone attempting to
recover the scrambled message (hereby referred to as an/the
attacker) may only do so by calculating the hash of every
possible message and then comparing the results obtained with
the desired hash for any (potential) matches. This process of
brute-forcing hash results is computationally expensive, as the
already expensive hash process must be repeated for every
message tried. In this manner are passwords kept confidential
to its owner, as any attacker, not even those who by design are
in possession of the hash such as websites in the case of user
logins, are theoretically able to recover and know its plaintext.

It is to be noted, however, that this difficulty of recovering
passwords is a double-edged sword, as there are cases where
hashed passwords must be recovered for legitimate,
non-malicious purposes. Cases include the recovery of

Makalah II4031 Kriptografi dan Koding, Semester II Tahun 2023/2024

passwords that are forgotten by their owner and are unable to
be changed or recovered by other means, as well as the
recovery of passwords for investigation or legal purposes. In
such cases, the cost of hash-cracking ends up being a burden
rather than a gain.

Historically, the time needed to crack passwords is known
to be very long. However, several factors have significantly
reduced this figure. This includes the general advancement of
CPUs, which have led to increased clock speeds and thus
speed of hash-calculation. However, and more importantly for
this article, this also includes the advancement and
proliferation of distributed and parallel computing, brought
about by the increasing performance and availability of
graphics processing units or GPUs.

By using a parallel programming paradigm as well as the
hardware and software necessary to support it (such as the
CUDA toolkit for GPUs made by Nvidia), attackers (whether
legitimate or malicious) are theoretically able to significantly
shorten the time needed to crack passwords. This is because,
by doing so, hashes are no longer calculated sequentially
one-at-a-time. Rather, several hundred or even thousands of
hashes can be calculated simultaneously and parallelly across
the myriad cores of the GPU.

Contributions. In this paper, we will attempt to compare
the performance of CPUs and GPUs for the purposes of hash-
cracking by comparing the benchmark results of a CPU-based
implementation of the SHA3-256 hashing algorithm with a
GPU-based implementation of said algorithm.

Outline. The rest of the document is outlined as follows. In
section II, we describe the research methodology as well as
any and all limitations applicable. In section III, we will
conduct a literature review that explores any and all relevant
theories, concepts, standards, and prior studies. In section IV,
we will implement the SHA-3-256 algorithm for use with the
CPU and the GPU, conduct a benchmark which evaluates and
compares the performance of each in attempting a hash-crack,
as well as outline and analyze the results. Lastly, in section V,
we will provide general conclusions in regards to the
difference in performance (if any), as well as outline any
suggestions for further research.

II. RESEARCH METHODOLOGY

A. Methodology
We will first explore any and all relevant theories,

concepts, standards, and prior studies via literature review.
Afterwards, we will perform a password-cracking attack on a
SHA-3-256 hash using hashcat in both its CPU and GPU
modes while benchmarking the performance of each.

In order to evaluate and compare the performance of each,
both algorithms will then be given a target hash, as well as a
wordlist of passwords that will be tried. The performance will
be measured using the time needed to successfully crack the
hash, i.e., the time needed to successfully find the string
whose hash matches the given hash.

B. Limitations
We limited our research to the exploration of relevant

theories, concepts, and prior studies, as well as an experiment
in order to determine and compare the performance of
SHA-3-256 in each processing unit (CPU and GPU) as well as
their respective paradigms. The comparison will be done
between hashcat's implementation of SHA-3-256 for both the
CPU and GPU. As this research aims to compare the
performance of each paradigm for use in password-cracking,
no additional optimizations will be made for both
implementations unless absolutely necessary.

III. LITERATURE REVIEW

A. Hashing

A hash function is defined as a one-way function that
receives a message of any length as input, and produces a
value of fixed length as output [3]. The one-way and
compressing nature of hash functions have led it to become
the backbone of many modern systems and security
techniques, ranging from database indexing and
cryptocurrencies to message authentication and digital
signatures. However, perhaps the most well-known and
applied use of hash functions is for the secure and confidential
storage of passwords [3].

It is to be noted, however, that not all hash functions are
secure. A hash function may only be said to be secure if it
fulfills all three of the following properties :

1. For a hash function H and given output of h, it is
difficult to find any input x where H(x) = h. This
property is known as the (first) preimage resistance
property.

2. For a hash function H and given input x, it is difficult
to find a second input y where y ≠ x and H(x) = H(y).
This property is known as the second preimage
resistance property.

3. For a hash function H, It is difficult to find a pair of
inputs x ≠ y where H(x) = H(y). This property is
known as the collision resistance property. While
similar to the second preimage resistance property,
and the fact that any violation of the second preimage
resistance property also results in the violation of the
collision resistance property, this property is different
in that no known input is given, and that it only cares
about whether or not any collision (the situation in
which two different messages produces the same
hash value) occurs. [16]

Over the years, many different hashing algorithms have
been developed, many of which have been deemed insecure
due to the violation of at least one of the above properties. For
example, the MD5 algorithm, one of the most well-known and
most-used hashing algorithms, has been described as being
"cryptographically broken and unsuitable for further use", due
to the many weaknesses (one of which being its susceptibility
to collisions and thus violation of the collision resistance
property) that have been found within it [2]. As such,
researchers around the world are constantly developing new
algorithms, while also attempting to find weaknesses in
already existing ones.

Makalah II4031 Kriptografi dan Koding, Semester II Tahun 2023/2024

This drive to create "the perfect hashing algorithm" -
which not only possesses perfect security but also provides
great performance - has, among others, resulted in the creation
of various hash construction methods. These construction
methods essentially describe how a hash value is created from
its input. The following are four well known constructions:

1. Merkle-Damgård or MD construction, which is one
of the earliest construction methods and is the one
used in the MD-5, SHA-1, and SHA-2 algorithms;

2. Wide Pipe Hash construction, which is created to
solve the weaknesses of and improve upon MD
construction by having a larger internal state size;

3. Fast Wide Pipe construction, which improves upon
the Wide PIpe Hash construction by giving speeds
twice as fast; and lastly,

4. Sponge construction, which aims to replace MD
construction and works in a fundamentally different
manner compared to it. [3]

Out of all construction methods mentioned above, the
sponge construction is one of the most novel, and many have
proved its robustness. In simple terms, the sponge construction
works by first absorbing the messages into the internal state of
the hash function, before then squeezing out the bits of the
state as output [11]. This construction method is what is used
in the SHA-3 family of hashing algorithms, which is the latest
in the Secure Hash Algorithm (SHA) family.

B. SHA-3-256

The SHA-3 algorithm is the newest algorithm in the
Secure Hash Algorithm (SHA) family of hashing algorithms
[6][8][13]. Released by the United States National Institute of
Standards and Technology (NIST) in August 2015, the SHA-3
algorithm is based on the Keccak algorithm, which was
selected as the winner for the NIST hash function competition
. While it is said that SHA-3 is based off of Keccak, it is to be
noted that in reality, the underlying algorithm is nearly
identical; the only difference being in how a message is
padded before its hash is calculated.

There are several instances, or variations, on the SHA-3
algorithm. These variations are generally based on the desired
size of the output or hash value, which as defined by NIST, are
either 224, 256, 384, or 512 bits long. Thus, the instance
where the desired output size is 256 bits long is known as the
SHA-3-256 hashing algorithm.

The following is a simplified description of how
SHA-3-256 works, as outlined in FIPS (Federal Information
Processing Standard) 202 [6][13]:

Preparation phase:

1. Determine and or calculate the following values as
the following:

a. Output size (d), in bits. For SHA-3-256, d =
256 in bits.

b. Capacity (c) in bits, where c = 2 * d. For
SHA-3-256, c = 512 bits.

c. Rate, also known as block size (r), in bits,
where r = 1600 - c. For SHA-3-256, r =
1088 bits.

d. The length of the message (m) in bits.
2. Calculate the number of padding bytes (q) needed to

be appended to the message, where q = (r/8) - (m
mod (r/8)). This assumes that the plaintext or input
message M is byte-aligned, that is, a multiple of 8
bits long.

3. Append the padding bytes as outlined in Fig. 1. For
cases where q > 2, the notation 0x00 symbolizes a
string that consists of q - 2 "zero" bytes, i.e, 0x00.
repeated q - 2 times.

4. Split the input message M into n blocks of r-size.
5. Initialize an internal state S of 1600 zero bytes, or in

other words, a 5x5 array of unsigned 64-bit integers
each with a value of zero. The first r-bits of this state
is the rate, and the remaining bits are the capacity.

FIGURE I. SHA-3 PADDING

Number of Padding Bytes (q) Padded Message

1 M || 0x06

2 M || 0x0680

> 2 M || 0x06 || 0x00… || 0x80

Fig. 1. Padding Guide for SHA-3 as per FIPS 202

Absorption phase:

6. Initialize the iteration counter i as 0.
7. XOR the internal state S with the i-th block of the

split-up message Mi. This results in the changing of
the rate bits, but not the capacity bits.

8. Apply the block permutation function, also known as
the Keccak function f, to the internal state S.

9. Increment i, and repeat the absorption phase until i
equals the amount of blocks.

Squeezing phase:

10. Initialize the output Z.
11. Append the first d-bits of S to Z. For SHA-3-256, this

means that the first 256-bits are to be appended.
12. Return Z.

It is to be noted that the above description is only fit for
SHA-3, which has fixed output lengths, and not SHAKE
which lets the user freely decide the amount of output bits.

An illustration of the above process is given in Fig. 2.

FIGURE II. SHA-3 FLOWCHART

Makalah II4031 Kriptografi dan Koding, Semester II Tahun 2023/2024

Fig. 2. Flowchart for the SHA-3 Algorithm

In the absorption phase, a certain block permutation
function or Keccak function f is mentioned. This consists of 5
predetermined steps or phases, which are named theta, rho, pi,
chi, and iota respectively. In the function, these steps are then
repeated 24 times, a visual representation of which is given in
Fig. 3.

FIGURE III. KECCAK FUNCTION

Fig. 3. Flowchart for the Keccak Function

This novel design, as well as its non-use of MD
construction unlike the previous algorithms in the SHA family,
is what ultimately led to Keccak being selected as the
competition winner and becoming SHA-3.

C. Password Cracking

As mentioned previously, password cracking can be
defined as the process of recovering the original plaintext, that
is to say, the unscrambled version, of a password from its hash
value [1].

There are many methods or strategies that may be used to
crack passwords, with the most common, straightforward, and
expensive of which being a brute-force attack. A brute-force
attack is defined as an attack in which, given a hash h and
hash function H, the attacker guesses all possible passwords
until a password x where H(x) = h is found - in other words,

until a password that has the same hash value as the given
hash is found [1]. This process is computationally very
expensive and time consuming, and scales with the difficulty
and security of the hashing algorithm being used. Due to the
security of SHA-3, the use of this method by attackers is
essentially forced.

In a real-world scenario, however, a brute-force attack
most likely will not check for every possible permutation.
Instead, only permutations from a predefined wordlist will be
checked. This word list usually consists of the plaintext of
many commonly used passwords, obtained from data breaches
of services that either store passwords in plaintext format, or
do so using a weak hashing algorithm that is able to or was
already reversed quickly. For example, the rockyou.txt
wordlist is a word list obtained from the data breach of
RockYou, a company which created online social games as
well as an application platform for various social networking
sites. The company was found to have stored user passwords
in plaintext form; this exfiltrated password database was then
output into a large text file, and today stands as one of the
most commonly used wordlists in brute-force password
cracking attacks [12].

In order to assist with hash-cracking, a program known as
hashcat may be used. Hashcat is a widely-used password
recovery program, with its creators claiming that it is the
"world's fastest and most advanced password recovery tool".
Hashcat has support for both CPU and GPU [9].

D. GPUs in Password Cracking

Compared to CPUs, Graphics Processing Units (also
known as GPUs) are designed to perform computations in a
parallel, rather than a sequential, manner. That is, calculations
are not performed sequentially, but rather parallelly at the
same time. This parallel computation allows for more
calculations to be performed at once, giving performance
increases in cases of repetitive calculations that would
normally be blocked by the sequential nature of CPUs [7].

In regards to cryptography, previous studies have shown
the drastic performance increases brought about by performing
cryptographic calculations in parallel using GPUs. This
includes an increase in speeds of RSA and AES encryption
when compared to that of CPUs [10], as well as a higher
throughput when calculating hashes [4][5].

With this knowledge, it is hypothesized that the usage of
GPUs and parallel computation in general, as well as the
CUDA platform in particular, may be able to drastically
decrease the time needed to perform a brute-force password
cracking attack.

IV. ANALYSIS

A. Computer Specifications

For the purposes of this article, a computer with the
following specifications are used:

- OS: Fedora Linux 40 (KDE Plasma)
- CPU: AMD Ryzen 7 7800X3D @ 5.05 GHz
- GPU: NVIDIA GeForce RTX 4070
- RAM: 32 GB DDR5

Makalah II4031 Kriptografi dan Koding, Semester II Tahun 2023/2024

Proof of the above specifications can be found in Fig. 4

FIGURE IV. COMPUTER SPECIFICATIONS

Fig. 4. Fastfetch Screenshot Displaying Specifications

B. Hash-cracking Process

In order to perform a SHA-3-256 password-cracking
performance comparison between the CPU and GPU, the
hashcat program is used. Each execution will have the
–potfile-disable argument, in order to force hashcat to
recalculate the hash.

For the GPU, only the OpenCL framework will be used.
This is due to an unexpected error regarding the CUDA
framework in the writer's computer.

The word list used will be the rockyou.txt wordlist, with
the following passwords added (each respective hash also
given):

- RaidenEiIsMyWife
(5adc36daff1105b8eef714753fcc73df88c8eb6234fa6
2551f1148a4000a0a4c)

- h0us3ofthehe4rth
(b73c1970803f8de5c8693a1a859c6a3aa0a635a35c5e
1708b9bde34fe60787ae)

- Cry0byTe!
(75d939a66a6ab1ed070ceadeac92679100bbe6dd111
57c3212af74e7fabd5508)

C. CPU Performance

In order to benchmark the CPU performance, the following
command is used:

hashcat -a 0 -m 17400 --opencl-device-types 1 --potfile-disable
--backend-ignore-cuda [hash] rockyou.txt

Running the program three times for each hash, an average
speed of 11839.6 kH/s is obtained, with an average time of
0.71ms. The complete results of each execution can be found
in Fig. 5, and a sample log and screenshot can be found in Fig.
6 and Fig. 7.

FIGURE V. CPU RESULTS

Password Speed Time

RaidenEiIsMyWife 12148.4 kH/s 0.68 ms

h0us3ofthehe4rth 11958.2 kH/s 0.70 ms

Cry0byTe! 11412.3 kH/s 0.74 ms

Fig. 5. CPU Results

FIGURE VI. CPU SAMPLE OUTPUT

hashcat (v6.2.6) starting

OpenCL API (OpenCL 3.0 CUDA 12.4.131) - Platform #1 [NVIDIA
Corporation]
===
===================
* Device #1: NVIDIA GeForce RTX 4070, skipped

OpenCL API (OpenCL 3.0 PoCL 5.0 Linux, Release, RELOC, SPIR,
LLVM 17.0.6, SLEEF, DISTRO, POCL_DEBUG) - Platform #2 [The pocl
project]
===
===
============================
* Device #2: cpu-skylake-avx512-AMD Ryzen 7 7800X3D 8-Core
Processor, 14556/29177 MB (4096 MB allocatable), 16MCU

/usr/lib64/hashcat/OpenCL/m17400_a0-optimized.cl: Pure kernel not
found, falling back to optimized kernel
Minimum password length supported by kernel: 0
Maximum password length supported by kernel: 31

Hashes: 1 digests; 1 unique digests, 1 unique salts
Bitmaps: 16 bits, 65536 entries, 0x0000ffff mask, 262144 bytes, 5/13
rotates
Rules: 1

Optimizers applied:
* Optimized-Kernel
* Zero-Byte
* Not-Iterated
* Single-Hash
* Single-Salt
* Raw-Hash
* Uses-64-Bit

Watchdog: Temperature abort trigger set to 90c

Host memory required for this attack: 4 MB

Dictionary cache hit:
* Filename..: rockyou.txt
* Passwords.: 14344388
* Bytes.....: 139922229
* Keyspace..: 14344388

75d939a66a6ab1ed070ceadeac92679100bbe6dd11157c3212af74e7fabd55
08:Cry0byTe!

Session..........: hashcat
Status...........: Cracked
Hash.Mode........: 17400 (SHA3-256)
Hash.Target......:
75d939a66a6ab1ed070ceadeac92679100bbe6dd11157c3212a...bd5508
Time.Started.....: Wed Jun 12 23:35:23 2024 (1 sec)
Time.Estimated...: Wed Jun 12 23:35:24 2024 (0 secs)
Kernel.Feature...: Optimized Kernel

Makalah II4031 Kriptografi dan Koding, Semester II Tahun 2023/2024

Guess.Base.......: File (rockyou.txt)
Guess.Queue......: 1/1 (100.00%)
Speed.#2.........: 11412.3 kH/s (0.74ms) @ Accel:1024 Loops:1 Thr:1 Vec:8
Recovered........: 1/1 (100.00%) Digests (total), 1/1 (100.00%) Digests
(new)
Progress.........: 2786031/14344388 (19.42%)
Rejected.........: 751/2786031 (0.03%)
Restore.Point....: 2769643/14344388 (19.31%)
Restore.Sub.#2...: Salt:0 Amplifier:0-1 Iteration:0-1
Candidate.Engine.: Device Generator
Candidates.#2....: whatitishoe -> wenalegan
Hardware.Mon.#2..: Temp: 44c Util: 28%

Started: Wed Jun 12 23:35:23 2024
Stopped: Wed Jun 12 23:35:26 2024

Fig. 6. CPU Sample Output

FIGURE VII. SAMPLE OUTPUT

Fig. 7. Screenshot of Sample CPU Output

D. GPU Performance

In order to benchmark the GPU performance, the
following command is used:

hashcat -a 0 -m 17400 --opencl-device-types 2 --potfile-disable
--backend-ignore-cuda [hash] rockyou.txt

Running the program three times for each hash, an average
speed of 12134.1 kH/s is obtained, with an average time of
0.40ms. The complete results of each execution can be found
in Fig. 7, and a sample log screenshot can be found in Fig. 8
and Fig. 9.

FIGURE VIII. CPU RESULTS

Password Speed Time

RaidenEiIsMyWife 9339.6 kH/s 0.31 ms

h0us3ofthehe4rth 12031.8
kH/s 0.44 ms

Cry0byTe! 15030.9 kH/s 0.44 ms

Fig. 8. GPU Results

FIGURE IX. CPU SAMPLE OUTPUT

hashcat (v6.2.6) starting

* Device #1: WARNING! Kernel exec timeout is not disabled.
This may cause "CL_OUT_OF_RESOURCES" or related

errors.
To disable the timeout, see: https://hashcat.net/q/timeoutpatch

OpenCL API (OpenCL 3.0 CUDA 12.4.131) - Platform #1 [NVIDIA
Corporation]
===
===================
* Device #1: NVIDIA GeForce RTX 4070, 10176/11999 MB (2999 MB
allocatable), 46MCU

OpenCL API (OpenCL 3.0 PoCL 5.0 Linux, Release, RELOC, SPIR,
LLVM 17.0.6, SLEEF, DISTRO, POCL_DEBUG) - Platform #2 [The pocl
project]
===
===
============================
* Device #2: cpu-skylake-avx512-AMD Ryzen 7 7800X3D 8-Core
Processor, skipped

/usr/lib64/hashcat/OpenCL/m17400_a0-optimized.cl: Pure kernel not
found, falling back to optimized kernel
Minimum password length supported by kernel: 0
Maximum password length supported by kernel: 31

Hashes: 1 digests; 1 unique digests, 1 unique salts
Bitmaps: 16 bits, 65536 entries, 0x0000ffff mask, 262144 bytes, 5/13
rotates
Rules: 1

Optimizers applied:
* Optimized-Kernel
* Zero-Byte
* Not-Iterated
* Single-Hash
* Single-Salt
* Raw-Hash
* Uses-64-Bit

Watchdog: Temperature abort trigger set to 90c

Host memory required for this attack: 1464 MB

Dictionary cache hit:
* Filename..: rockyou.txt
* Passwords.: 14344388
* Bytes.....: 139922229
* Keyspace..: 14344388

75d939a66a6ab1ed070ceadeac92679100bbe6dd11157c3212af74e7fabd55
08:Cry0byTe!

Session..........: hashcat
Status...........: Cracked
Hash.Mode........: 17400 (SHA3-256)

Makalah II4031 Kriptografi dan Koding, Semester II Tahun 2023/2024

Hash.Target......:
75d939a66a6ab1ed070ceadeac92679100bbe6dd11157c3212a...bd5508
Time.Started.....: Wed Jun 12 23:42:57 2024 (1 sec)
Time.Estimated...: Wed Jun 12 23:42:58 2024 (0 secs)
Kernel.Feature...: Optimized Kernel
Guess.Base.......: File (rockyou.txt)
Guess.Queue......: 1/1 (100.00%)
Speed.#1.........: 15318.6 kH/s (0.44ms) @ Accel:512 Loops:1 Thr:32
Vec:1
Recovered........: 1/1 (100.00%) Digests (total), 1/1 (100.00%) Digests
(new)
Progress.........: 3015452/14344388 (21.02%)
Rejected.........: 796/3015452 (0.03%)
Restore.Point....: 2261075/14344388 (15.76%)
Restore.Sub.#1...: Salt:0 Amplifier:0-1 Iteration:0-1
Candidate.Engine.: Device Generator
Candidates.#1....: 4507296 -> tyler0610
Hardware.Mon.#1..: Temp: 43c Fan: 0% Util: 17% Core:2865MHz
Mem:10501MHz Bus:16

Started: Wed Jun 12 23:42:56 2024
Stopped: Wed Jun 12 23:42:58 2024

Fig. 9. CPU Sample Output

FIGURE X. SAMPLE OUTPUT

Fig. 10. Screenshot of Sample GPU Output

V. CONCLUSION

Using hashcat, we have successfully proven that cracking a
SHA-3-256 hashed password using the GPU is significantly
faster than the CPU.

In regards to future research, much can still be done. For
one, other APIs, such as CUDA, may also be used.
Additionally, a larger as well as more random wordlist could
also be used to truly highlight any differences in performance.

ACKNOWLEDGMENT

We, the writer of this article, would like to provide great
acknowledgement to the following parties:

1. God Almighty, who created this universe and all of
its mathematical and physical laws with the greatest
perfection;

2. Dr. Rinaldi Munir M.T., who without his lessons on
cryptography would not have allowed us to write this
article;

3. Zhillan Attarizal Rezyarifin, who, despite our many
differences, has been a great inspiration both outside
and inside the context of the this article; and

4. Raiden Ei/Shogun, Yae Miko, Clorinde, Lisa, Peruere
(A.K.A. Arlecchino), Kafka, Ceres Fauna, Nerissa
Ravencroft, Kurohime, and Makima, who have
provided us with great company throughout the
writing of this article.

REFERENCES

[1] F. Yu and Y. Huang, “An Overview of Study of Passowrd Cracking,” in
2015 International Conference on Computer Science and Mechanical
Automation (CSMA), Oct. 2015, pp. 25–29. doi:
10.1109/CSMA.2015.12.

[2] “CERT/CC Vulnerability Note VU#836068.” Accessed: Jun. 12, 2024.
[Online]. Available: https://www.kb.cert.org

[3] A. A. Alkandari, I. F. Al-Shaikhli, and M. A. Alahmad, “Cryptographic
Hash Function: A High Level View,” in 2013 International Conference
on Informatics and Creative Multimedia, Sep. 2013, pp. 128–134. doi:
10.1109/ICICM.2013.29.

[4] W.-K. Lee, K. Jang, G. Song, H. Kim, S. O. Hwang, and H. Seo,
“Efficient Implementation of Lightweight Hash Functions on GPU and
Quantum Computers for IoT Applications,” IEEE Access, vol. 10, pp.
59661–59674, 2022, doi: 10.1109/ACCESS.2022.3179970.

[5] H. Choi and S. C. Seo, “Fast Implementation of SHA-3 in GPU
Environment,” IEEE Access, vol. 9, pp. 144574–144586, 2021, doi:
10.1109/ACCESS.2021.3122466.

[6] “FIPS 202, SHA-3 Standard: Permutation-Based Hash and
Extendable-Output Functions | CSRC.” Accessed: Jun. 12, 2024.
[Online]. Available: https://csrc.nist.gov/pubs/fips/202/final

[7] R. S. Dehal, C. Munjal, A. A. Ansari, and A. S. Kushwaha, “GPU
Computing Revolution: CUDA,” in 2018 International Conference on
Advances in Computing, Communication Control and Networking
(ICACCCN), Oct. 2018, pp. 197–201. doi:
10.1109/ICACCCN.2018.8748495.

[8] I. T. L. Computer Security Division, “Hash Functions | CSRC | CSRC,”
CSRC | NIST. Accessed: Jun. 12, 2024. [Online]. Available:
https://csrc.nist.gov/projects/hash-functions

[9] “hashcat [hashcat wiki].” Accessed: Jun. 12, 2024. [Online]. Available:
https://hashcat.net/wiki/doku.php?id=hashcat

[10] K. Grace, M. S. G. Devasena, and M. Shanmugam, “Joy of GPU
Computing: A Performance Comparison of AES and RSA in GPU and
CPU,” 2020, pp. 425–434. doi: 10.1007/978-981-15-5558-9_39.

[11] “Keccak Team.” Accessed: Jun. 12, 2024. [Online]. Available:
https://keccak.team/sponge_duplex.html

[12] N. Cubrilovic, “RockYou Hack: From Bad To Worse,” TechCrunch.
Accessed: Jun. 12, 2024. [Online]. Available:
https://techcrunch.com/2009/12/14/rockyou-hack-security-myspace-face
book-passwords/

Makalah II4031 Kriptografi dan Koding, Semester II Tahun 2023/2024

[13] M. J. Dworkin, “SHA-3 Standard: Permutation-Based Hash and
Extendable-Output Functions,” National Institute of Standards and
Technology, NIST FIPS 202, Jul. 2015. doi: 10.6028/NIST.FIPS.202.

[14] Polybius, The Histories, vol. 3. in Loeb Classical Library, no. 138, vol.
3. Harvard University Press, 2011.

[15] R. A. Grimes, “Types of Authentication,” in Hacking Multifactor
Authentication, Wiley, 2021, pp. 59–99. doi:
10.1002/9781119672357.ch3.

[16] M. Naor and M. Yung, “Universal one-way hash functions and their
cryptographic applications,” in Proceedings of the twenty-first annual
ACM symposium on Theory of computing, in STOC ’89. New York,
NY, USA: Association for Computing Machinery, Feb. 1989, pp. 33–43.
doi: 10.1145/73007.73011.

PERNYATAAN
Dengan ini saya menyatakan bahwa makalah yang saya tulis
ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan
dari makalah orang lain, dan bukan plagiasi.

Bandung, 12 Juni 2024

Salman Ma'arif Achsien
NIM: 18221102

Makalah II4031 Kriptografi dan Koding, Semester II Tahun 2023/2024

